Test Markdown Neovim UltiSnips
Since I was not able to figure out how to implement macros/own commands in \(\KaTeX\) with jekyll-katex and want to use the macros/commands of the \usepackage{physics}-latex-package, I am going to implement markdown snippets as an alternative.
Let’s begin with sets.
\[\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}.\]Then, Euler’s identity (for \mathrm{e} and \mathrm{i}).
Vector operations on \(\mathbb{R}^{3}\)
Vectorbold (macro: \boldsymbol{v}):
Unit vector (macro: \hat{\boldsymbol{e}}):
Scalarproduct (macro: \boldsymbol{x} \boldsymbol{\cdot} \boldsymbol{y}):
Vectorproduct (macro: \boldsymbol{x} \boldsymbol{\times} \boldsymbol{y}):
Gradient (macro: \boldsymbol{\nabla} \phi):
Divergence (macro: \boldsymbol{\nabla \cdot A}):
Curl (macro: \boldsymbol{\nabla \times A}):
Laplacian (macro: \boldsymbol{\nabla}^{2} \phi):
D’Alembertian (macro: \Box A):
Differentiation
Differential (macro: \operatorname{d}\!x\, f(x)):
Fractional derivative (macro: \frac{\operatorname{d}\!f(x)}{\operatorname{d}\!x} ):
Powered fractional derivative (macro: \frac{\operatorname{d}^{n}\!f(x)}{\operatorname{d}\!x^{n}}):
Fractional partial derivative (macro: \frac{\partial f(x)}{\partial x}):
Powered partial derivative (macro: \frac{\partial^{n} f(x)}{\partial x^{n}}):
Integrals
One dimensional integral (macro: \int\limits_{-\infty}^{\infty}\!\!\operatorname{d}\!x\, f(x)):
Two dimensional integral (macro: \int\limits_{-\infty}^{\infty}\!\!\operatorname{d}\!x\!\!\int\limits_{-\infty}^{\infty}\!\!\operatorname{d}\!y\, f(x,y)):
Two dimensional integral in polar coordinates (macro: \int\limits_{0}^{2\pi}\!\!\operatorname{d}\!phi\!\!\int\limits_{0}^{\infty}\!\!\operatorname{d}\!r\,r f(r,\phi)):
Three dimentional integral (macro: \int\limits_{-\infty}^{\infty}\!\!\operatorname{d}\!x\!\!\int\limits_{-\infty}^{\infty}\!\!\operatorname{d}\!y\!\!\int\limits_{-\infty}^{\infty}\!\!\operatorname{d}\!z\, f(x,y,z)):
Three dimensional integral in cylindrical coordinates (macro: \int\limits_{0}^{2\pi}\!\!\operatorname{d}\!\phi\!\!\int\limits_{0}^{\infty}\!\!\operatorname{d}\!r\,r\!\!\int\limits_{-\infty}^{\infty}\!\!\operatorname{d}\!z\, f(r,\phi,z)):
Three dimensional integral in spherical coordinates (macro: \int\limits_{0}^{2\pi}\!\!\operatorname{d}\!\phi\,\!\!\int\limits_{0}^{\pi}\!\!\operatorname{d}\!\theta\,\sin(\theta)\!\!\int\limits_{0}^{\infty}\!\!\operatorname{d}\!r\,r^2 f(r,\theta,\phi)):
\(n\)-dimensional integral (macro: \int\limits_{\R^{n}}\!\!\operatorname{d}^{n}\!\, f(\boldsymbol{r})):
The Wave Equation
\[\Box \psi(\boldsymbol{r},t) := -\frac{1}{c^{2}} \frac{\partial^{2} }{\partial t^{2}} \psi(\boldsymbol{r},t) + \boldsymbol{\nabla}^{2} \psi(\boldsymbol{r},t) = 0\]The Maxwell Equations
And, last but not least, again, the Maxwell equations:
\[\begin{aligned} \boldsymbol{\nabla \cdot E} &= 4 \pi \rho \\ \boldsymbol{\nabla \cdot B} &= 0 \\ \boldsymbol{\nabla \times E} &= - \frac{1}{c} \frac{\partial }{\partial t} \boldsymbol{B} \\ \boldsymbol{\nabla \times B} &= \frac{1}{c} \biggl(4 \pi \boldsymbol{j} + \frac{\partial }{\partial t} \boldsymbol{E} \biggr) \end{aligned}\]