How to master $\LaTeX$ in physics
This is a brief summary of Do’s and Don’ts when writing equations with $\LaTeX$ in physics.
In advance: use the $\LaTeX$-packages
Using those packages as a guide prevents about 90% of all common $\LaTeX$-NoGoes. Have a look at their documentation!
Good | Bad | Explanation | |
---|---|---|---|
Total derivative | \dv{f}{x} : \(\displaystyle\frac{\operatorname{d}\!f}{\operatorname{d}\!x}\) |
\frac{df}{dx} : \(\displaystyle \frac{df}{dx}\) |
The “differential”-$\mathrm{d}$ should always be non-italic. |
Total derivative (higher order) | \dv[n]{f}{x} : \(\displaystyle\frac{\operatorname{d}^{n}\!f}{\operatorname{d}\!x^{n}}\) |
\frac{d^{n}f}{dx^{n}} : \(\displaystyle \frac{d^{n}f}{dx^{n}}\) |
|
Partial derivative | |||
Partial derivative (higher order) | |||
$1$-dimensional Integral | \int\limits_{x_{1}}^{x_{2}} \dd{x} f(x) : \(\displaystyle \int\limits_{x_{1}}^{x_{2}}\!\!\operatorname{d}\!x\, f(x)\) |
\int_{x_{1}}^{x_{2}} dx f(x) : \(\displaystyle \int_{x_{1}}^{x_{2}} dx f(x)\) |
|
$n$-dimensional Integral | \int\limits_{\R^{n}} \dd[n]{x} f(x) : \(\displaystyle \int\limits_{\mathbb{R}^{n}}\!\!\operatorname{d}^{n}\!x\, f(x)\) |
||
Surface integral over a vector field | \(\displaystyle \int\limits_{S}\!\!\operatorname{d}\!S\, \hat{\boldsymbol{n}}_{\perp S} \boldsymbol{\cdot} \boldsymbol{E}(\boldsymbol{r})\) | ||
Reserved mathematical letters (i.e.: Euler’s number $\mathrm{e}$, imaginary unit $\mathrm{i}$, …) | \mathrm{e}^{\mathrm{i}x} = \cos(x) + \mathrm{i} \sin(x) : \(\mathrm{e}^{\mathrm{i}x} = \cos(x) + \mathrm{i} \sin(x)\) |
e^{ix} = cos(x) + i sin(x) : \(e^{ix} = cos(x) + i sin(x)\) |